
9

Reshaping Data

R is designed so that individual functions don’t have complete flexibility with
regard to their inputs. Most functions expect their input data to be arranged
in a particular way, and it’s the responsibility of the user of the function to
make sure that the input data is in an appropriate form. So even after you’ve
read in or created your data, it may be necessary to modify your data to suit
a function you need.

The focus of this chapter will be on working with data frames, since that
is the form required for the majority of the functions in R.

9.1 Modifying Data Frame Variables

Since data frames are lists, new variables can be created by simply assigning
their value to a column that doesn’t already exist in the data frame. Since
operations in R are vectorized, transformations can be carried out without
the need to use loops. For example, consider the Loblolly data frame which
has variables for height and age for a number of trees. To create a variable
called logheight representing the log of the height variable, we could use
statements like

> Loblolly$logheight = log(Loblolly$height)

or

> Loblolly[’logheight’] = log(Loblolly[’height’])

The system’s version of the Loblolly data frame will not be changed by these
statements, but your local copy of Loblolly will have the new logheight
column.

Two functions are handy to avoid the need of retyping the data frame
name in order to access columns of a data frame. The with function can be
used to evaluate any expression, first looking in a data frame of your choice to

132 9 Reshaping Data

resolve variables. For example, the logheight column in the previous example
could be created using

> with(Loblolly,log(height))

In cases where new columns are being added to an existing data frame,
the transform function can be used. The first argument to transform is a
data frame, and the remaining arguments define new columns which will be
returned along with all the columns of the original data frame. Each new
column is defined by a name=value pair. So an alternate way of creating the
logheight column in the Loblolly dataset would be

> Loblolly = transform(Loblolly,logheight = log(height))

Once again, the system version of Loblolly is unaltered, but the version in
the local workspace will have the new column.

To remove a column from a data frame, set its value to NULL. The subset
function (see Section 6.8) can also be useful in such situations. Negative sub-
scripts, which extract everything except those elements specified in the nega-
tive subscripts, can also be used to create a data frame with selected rows or
columns removed.

Often a similar operation needs to be performed on several columns of
a data frame, with the goal being to overwrite the original versions of the
variables. In cases like this, the left-hand side of the assignment statement can
consist of multiple columns, as long as the expression on the right-hand side is
the same size as implied by the target. For example, to convert the lengths of
the four numeric variables in the iris dataset to inches from centimeters, we
can use sapply to operate on all four columns at once, and assign the result
back to those same columns:

> iris[,-5] = sapply(iris[,-5],function(x)x/2.54)

9.2 Recoding Variables

Often times it is necessary to create a new variable based on values of an old
variable. For example, in contingency table analysis we may need to group
together observations with different values, and assign them all a new value.
For logistic regression, it may be necessary to change a continuous variable into
one that takes on values of either 0 or 1. For simple cases, logical variables
can be used directly to convert a continuous variable to a binary one. For
example, using the iris data frame, suppose we wanted to create a new
variable, bigsepal, which would be TRUE when Sepal.Length was greater
than 6, and FALSE otherwise. We can simply create the appropriate logical
variable:

> bigsepal = iris$Sepal.Length > 6

9.2 Recoding Variables 133

When a logical variable is used in a numeric context, it is automatically
converted to 1 if it is TRUE and 0 if it is FALSE. Thus, logical variables can
be manipulated to create categorical variables with more than two levels.
Suppose we wanted to create a categorical variable called sepalgroup, based
on Sepal.Length, which would be equal to 1 for lengths less than or equal to
5, 2 for lengths between 5 and 7, and 3 for lengths greater than or equal to 7.
We could combine logical variables as follows:

> sepalgroup = 1 + (iris$Sepal.Length >= 5)
+ + (iris$Sepal.Length >= 7)

Note that in this case the same result could be achieved using cut (see Sec-
tion 5.4):

> sepalgroup = cut(iris$Sepal.Length,c(0,5,7,10),
+ include.lowest=TRUE,right=FALSE)

For some recoding tasks, the ifelse function may be more useful than ma-
nipulating logical variables directly. Suppose we have a variable called group
that takes on values in the range of 1 to 5, and we wish to create a new
variable that will be equal to 1 if the original variable is either 1 or 5, and
equal to 2 otherwise. The ifelse statement accepts a logical vector as its
first argument, and two other arguments: the first provides a value for the
case where elements of the input logical vector are true, and the second for
the case where they are false. So in this example, we could get the desired
result using

> newgroup = ifelse(group %in% c(1,5),1,2)

The second and third arguments to ifelse will be recycled as necessary to
be conformable with the input logical vector.

Note that the object returned by ifelse will be the same shape as the
first input argument, so ifelse is effectively limited to cases where the desired
result for each element is a scalar. If either of the second or third arguments to
ifelse returns a vector, the return value of ifelse will be silently truncated
to just its first element.

Calls to ifelse can be nested. Continuing with the previous example, if
we wanted to recode values of 1 and 5 to 1, 2 and 4 to 2, and other values (in
this case 3) to 3, we could use nested calls to ifelse as follows:

> newgroup = ifelse(group %in% c(1,5),1,
+ ifelse(group %in% c(2,4),2,3))

Some words of warning about ifelse are in order. If any of the elements
of the first argument to ifelse are TRUE, then all of the values in the second
argument will need to be evaluated. Similarly, if any of the input elements
are FALSE, then each value in the third argument must be evaluated. If either
of the alternative values requires a large amount of computation, this may
make ifelse surprisingly slow. Additionally, using ifelse with a variety of

134 9 Reshaping Data

data may result in surprises. As a simple example, suppose we have a vector,
x, and we wish to take the logarithm of the values greater than 0, and the
absolute value of values less than or equal to zero. If we happen to provide a
vector with all values less than zero, there is no problem:

> x = c(-1.2,-3.5,-2.8,-1.1,-0.7)
> newx = ifelse(x > 0,log(x),abs(x))
> newx
[1] 1.2 3.5 2.8 1.1 0.7

As soon as one or more values in the vector satisfy the condition x > 0,
warnings will appear when R tries to evaluate the logarithm of the negative
numbers, even though it will never actually return them:

> x = c(-1.2,-3.5,-2.8,1.1,-0.7)
> newx = ifelse(x > 0,log(x),abs(x))
Warning message:
NaNs produced in: log(x)
> newx
[1] 1.20000000 3.50000000 2.80000000 0.09531018 0.70000000

At the expense of some additional operations, the problem can be avoided:

> newx = numeric(length(x))
> newx[x > 0] = log(x[x > 0])
> newx[x <= 0] = abs(x[x <= 0])
> newx
[1] 1.20000000 3.50000000 2.80000000 0.09531018 0.70000000

Since expressions in R return their evaluated values, yet another solution
is to use sapply with if/else expressions:

> newx = sapply(x,function(t)if(t > 0)log(t) else abs(t))

9.3 The recode Function

A very flexible approach to recoding variables is provided by the recode func-
tion of the car package, available through CRAN. Similar to facilities in other
statistical languages, the recode function accepts descriptions of ranges of val-
ues along with a new, constant value to be assigned to observations within
those ranges. These range/value pairs are passed to recode as a character
string, with equal signs (=) separating ranges and values, and semicolons (;)
separating each range/value pair.

There are four possibilities for range/value pairs:

1. single values, for example 3=’control’
2. multiple values, for example c(1,5)=5

9.4 Reshaping Data Frames 135

3. ranges of values, for example 5:7=’middle’. The special values lo and
hi can appear in a range to represent the lowest or highest value for the
variable being recoded.

4. the word else, representing values not covered by any other provided
ranges, for example else=’not found’.

So to recode values 1 and 5 to 1, 2 and 4 to 2, and other values to 3, we
could use recode as follows (after loading the car package):

> newgroup = recode(group,’c(1,5)=1;c(2,4)=2;else=3’)

9.4 Reshaping Data Frames

Often the values required for a particular operation can be found in a data
frame, but they are not organized in the appropriate way. As a simple example,
data for multiple groups are often stored in spreadsheets or data summaries
as columns, with a separate column for each group. Most of the modeling and
graphics functions in R will not be able to work with such data; they expect
the values to be in a single column with an additional column that specifies the
group from which the data arose. The stack function can reorganize datasets
to have this property. As an example, suppose that data for three groups is
stored in a data frame as follows:

> mydata = data.frame(grp1=c(12,15,19,22,25),
+ grp2=c(18,12,42,29,44),
+ grp3=c(8,17,22,19,31))
> mydata
grp1 grp2 grp3

1 12 18 8
2 15 12 17
3 19 42 22
4 22 29 19
5 25 44 31

To perform an analysis of variance or produce histograms for each group, the
data would need to rearranged using stack:

> sdata = stack(mydata)
> head(sdata)
values ind

1 12 grp1
2 15 grp1
3 19 grp1
4 22 grp1
5 25 grp1
6 18 grp2

136 9 Reshaping Data

If there were other variables in the data frame that did not need to be con-
verted to this form, the select= argument to stack allows you to specify the
variables that should be used, similar to the same argument to the subset
function.

The unstack function will reorganize stacked data back to the one column
per group form. To use unstack, a formula must be provided to explain the
roles of the variables to be unstacked. To convert the sdata data frame back
to its original form, unstack could be called as follows:

> mydata = unstack(sdata,values~ind)
> head(mydata)
grp1 grp2 grp3

1 12 18 8
2 15 12 17
3 19 42 22
4 22 29 19
5 25 44 31

For more complex reorganizations, the concept of “wide” versus “long”
datasets is often helpful. When there are multiple occurrences of values for
a single observation, a data frame is said to be long if each occurrence is a
separate row in the data frame; if all of the occurrences of values for a given
observation are in the same row, then the dataset is said to be wide. The
reshape function converts datasets between these two forms.

Perhaps the most common use of reshape involves repeated measures
analyses, where the same variable is recorded for each observation at several
different times. For some types of analysis (for example, split-plot designs),
the long form is preferred; for other analyses (for example, correlation stud-
ies), the wide form is needed. For example, consider the following artificial
dataset which contains observations at three different times for four subjects
on variables called x and y:

> set.seed(17)
> obs = data.frame(subj=rep(1:4,rep(3,4)),
+ time=rep(1:3),
+ x=rnorm(12),y=rnorm(12))
> obs

subj time x y
1 1 1 -1.01500872 1.29532187
2 1 2 -0.07963674 0.18791807
3 1 3 -0.23298702 1.59120510

. . .
9 3 3 0.25523700 0.68102765
10 4 1 0.36658112 -0.68203337
11 4 2 1.18078924 -0.72325674
12 4 3 0.64319207 1.67352596

9.4 Reshaping Data Frames 137

To use reshape to convert the dataset to wide format, we need to provide five
arguments. The first argument is the data frame to be reshaped. The next
three arguments provide the names of the columns that will be involved in
the reshaping. The idvar= argument provides the names of the variables that
define the experimental unit which was repeatedly measured. In this case, it’s
the subj variable. The v.names= argument tells reshape which variables in
the long format will be used to create the multiple variables in the wide format.
In this example, we want both x and y be to be expanded to multiple variables,
so we’d specify a vector with both those names. The timevar= variable tells
which variable identifies the sequence number that will be used to create the
multiple versions of the v.names variables; in this case it will be time. Finally,
the direction= argument accepts values of "wide" or "long", depending on
which transformation is to be performed. Putting this all together, we can
perform the conversion to wide format with the following call to reshape:

> wideobs = reshape(obs,idvar=’subj’,v.names=c(’x’,’y’),
+ timevar=’time’,direction=’wide’)
> wideobs

subj x.1 y.1 x.2 y.2
1 1 -1.0150087 1.29532187 -0.07963674 0.1879181
4 2 -0.8172679 -0.05517906 0.77209084 0.8384711
7 3 0.9728744 0.62595440 1.71653398 0.6335847
10 4 0.3665811 -0.68203337 1.18078924 -0.7232567

x.3 y.3
1 -0.2329870 1.5912051
4 -0.1656119 0.1593701
7 0.2552370 0.6810276
10 0.6431921 1.6735260

Notice that the names of the variables are passed to reshape, not the actual
values of the variables.

The names x.1, y.1, etc. were formed by joining together the variable
names of the variables specified in the v.names= argument with the values of
the timevar= variable. Any variables not specified in the v.names= argument
are assumed to be constant for all observations with the same values as the
idvar= variables, and a single copy of such variables will be included in the
output data frame. Only the variables whose names appear in the v.names=
argument will be converted into multiple variables, so if any variables that
are in the data frame but not in the v.names= argument are not constant,
reshape will print a warning message, and use the first value of such variables
when converting to wide format. To prevent variables from being transferred
to the output data frame, the drop= argument can be used to pass a vector
of variable names to be ignored in the conversion.

The information about the reshaping procedure is stored as attributes in
converted data frames, so once a data frame has been converted with reshape,
it can be changed to its previous format by passing just the data frame with

138 9 Reshaping Data

no additional arguments to reshape. Thus, we could convert the wideobs
data frame to its original long format as follows:

> obs = reshape(wideobs)
> head(obs)

subj time x y
1.1 1 1 -1.01500872 1.29532187
2.1 2 1 -0.81726793 -0.05517906
3.1 3 1 0.97287443 0.62595440
4.1 4 1 0.36658112 -0.68203337
1.2 1 2 -0.07963674 0.18791807
2.2 2 2 0.77209084 0.83847112

As an example of converting from wide to long format, consider the
USPersonalExpenditure dataset. Since it is stored as a matrix, we’ll first
convert it to a data frame, transferring the row names into a variable called
type:

> usp = data.frame(type=rownames(USPersonalExpenditure),
+ USPersonalExpenditure,row.names=NULL)
> usp

type X1940 X1945 X1950 X1955 X1960
1 Food and Tobacco 22.200 44.500 59.60 73.2 86.80
2 Household Operation 10.500 15.500 29.00 36.5 46.20
3 Medical and Health 3.530 5.760 9.71 14.0 21.10
4 Personal Care 1.040 1.980 2.45 3.4 5.40
5 Private Education 0.341 0.974 1.80 2.6 3.64

Since reshape can handle multiple sets of variables, the varying= argument
should be passed a list containing vectors with the names of the different sets
of variables that should be mapped to a single variable in the long dataset.
In the current example, there is only one set of variables to be mapped, so we
pass a list with a vector of the appropriate variable names. Along with the
direction=’long’ argument, this list will usually be enough to convert the
dataset:

> rr = reshape(usp,varying=list(names(usp)[-1]),direction=’long’)

> head(rr)

type time X1940 id

1.1 Food and Tobacco 1 22.200 1

2.1 Household Operation 1 10.500 2

3.1 Medical and Health 1 3.530 3

4.1 Personal Care 1 1.040 4

5.1 Private Education 1 0.341 5

1.2 Food and Tobacco 2 44.500 1

By providing additional information to reshape, the resulting data frame
can be modified to provide more useful information. For example, the auto-
matically generated variable id is simply a numeric index corresponding to

9.4 Reshaping Data Frames 139

the type variable; using idvar=’type’ will suppress its creation. The auto-
matically generated variable time defaults to a set of consecutive integers;
providing more meaningful values through the times= argument will label
the values properly. Finally, the name of the column representing the values
(which defaults to the first name in the varying= argument) can be set to a
more meaningful name with the v.names= argument.

> rr=reshape(usp,varying=list(names(usp)[-1]),idvar=’type’,
+ times=seq(1940,1960,by=5),v.names=’expend’,
+ direction=’long’)
> head(rr)

type time expend
Food and Tobacco.1940 Food and Tobacco 1940 22.200
Household Operation.1940 Household Operation 1940 10.500
Medical and Health.1940 Medical and Health 1940 3.530
Personal Care.1940 Personal Care 1940 1.040
Private Education.1940 Private Education 1940 0.341
Food and Tobacco.1945 Food and Tobacco 1945 44.500

In cases like this, where the desired value for time is embedded in the variable
names being converted, the split= argument can be used to automatically
determine the values for the times and names for the variables containing the
values. When you use the split= argument, the varying= argument should be
a vector, not a list, because reshape will figure out the sets of variables based
on the prefixes found by splitting the variable names. The split= argument is
passed as a list with two elements: regexp and include. The regexp argument
provides a regular expression used to split up the names provided through the
varying= argument. The first split piece will be used as a name for the variable
containing the values, and the second split piece will be used to form values for
the time variable that reshape generates. To keep the regular expression as
part of the names and values that are created, the include argument should
be set to TRUE. So an alternative way of reshaping the usp data frame, without
having to explicitly provide the values of the times, would be:

> rr1 = reshape(usp,varying=names(usp)[-1],idvar=’type’,
+ split=list(regexp=’X1’,include=TRUE),direction=’long’)
> head(rr1)

type time X
Food and Tobacco.1940 Food and Tobacco 1940 22.200
Household Operation.1940 Household Operation 1940 10.500
Medical and Health.1940 Medical and Health 1940 3.530
Personal Care.1940 Personal Care 1940 1.040
Private Education.1940 Private Education 1940 0.341
Food and Tobacco.1945 Food and Tobacco 1945 44.500

To replace the generated row names with ones of your own choosing, use the
new.row.names= argument.

140 9 Reshaping Data

9.5 The reshape Package

The reshape package, introduced in Section 8.6, uses the concept of “melting”
a dataset (through the melt function) into a data frame which contains sepa-
rate columns for each id variable, a variable column containing the name of
each measured variable, and a final column named value with the variable’s
value. It may be noticed that this melting operation is essentially a “wide-
to-long” reshaping of the data. Using the usp data frame from a previous
example, we can easily convert the melted form to the long form as follows:

> library(reshape)
> usp = data.frame(type=rownames(USPersonalExpenditure),
+ USPersonalExpenditure,row.names=NULL)
> musp = melt(usp)
> head(musp)

type variable value
1 Food and Tobacco X1940 22.200
2 Household Operation X1940 10.500
3 Medical and Health X1940 3.530
4 Personal Care X1940 1.040
5 Private Education X1940 0.341
6 Food and Tobacco X1945 44.500

To complete the conversion, we need only remove the “X” from the variable
column, rename it to time, and rename the value column to expend:

> musp$variable = as.numeric(sub(’X’,’’,musp$variable))
> names(musp)[2:3] = c(’time’,’expend’)
> head(musp)

type time expend
1 Food and Tobacco 1940 22.200
2 Household Operation 1940 10.500
3 Medical and Health 1940 3.530
4 Personal Care 1940 1.040
5 Private Education 1940 0.341
6 Food and Tobacco 1945 44.500

Keep in mind that variable is a factor, and that the sub function converts
it to a character before operating on it; if you use it directly, you may need
to pass it to as.character before processing. Since both the id variables and
measure variables appear in the columns of the “long” dataset, this transfor-
mation could also be performed using

cast(musp,variable + type ~ .)

For long-to-wide conversions, recall that variables appearing to the left
of the tilde in the formula passed to cast will appear in the columns of the
output, while those on the right will appear in the rows. Using the simulated

9.5 The reshape Package 141

data from the previous section, we put subj on the left-hand side of the
formula and variable (created by the melt function) and time on the right:

> set.seed(17)

> obs = data.frame(subj=rep(1:4,rep(3,4)),

+ time=rep(1:3),

+ x=rnorm(12),y=rnorm(12))

> mobs = melt(obs)

> cast(subj ~ variable + time,data=mobs)

subj x_1 x_2 x_3 y_1 y_2

1 1 -1.0150087 -0.07963674 -0.2329870 1.29532187 0.1879181

2 2 -0.8172679 0.77209084 -0.1656119 -0.05517906 0.8384711

3 3 0.9728744 1.71653398 0.2552370 0.62595440 0.6335847

4 4 0.3665811 1.18078924 0.6431921 -0.68203337 -0.7232567

y_3

1 1.5912051

2 0.1593701

3 0.6810276

4 1.6735260

The names of the derived columns are constructed in the order in which the
right-hand-side variables are entered in the formula.

To separate each time into a separate list element, the vertical bar (|) can
be used:

> cast(subj ~variable|time,data=mobs)
$‘1‘
subj x y

1 1 -1.0150087 1.29532187
2 2 -0.8172679 -0.05517906
3 3 0.9728744 0.62595440
4 4 0.3665811 -0.68203337

$‘2‘
subj x y

1 1 -0.07963674 0.1879181
2 2 0.77209084 0.8384711
3 3 1.71653398 0.6335847
4 4 1.18078924 -0.7232567

$‘3‘
subj x y

1 1 -0.2329870 1.5912051
2 2 -0.1656119 0.1593701
3 3 0.2552370 0.6810276
4 4 0.6431921 1.6735260

142 9 Reshaping Data

It can be noted that this performs the same operation as the split func-
tion (Section 8.5), but the redundant variable (time in this example) is not
included in the output.

Remember that the dataset that cast is operating on is the melted dataset,
not the original one. So to create a wide data frame from the simulated data,
but only including x, we could use

> cast(subj ~ variable + time,subset = variable == ’x’,data=mobs)

subj x_1 x_2 x_3

1 1 -1.0150087 -0.07963674 -0.2329870

2 2 -0.8172679 0.77209084 -0.1656119

3 3 0.9728744 1.71653398 0.2552370

4 4 0.3665811 1.18078924 0.6431921

9.6 Combining Data Frames

At the most basic level, two or more data frames can be combined by rows
using rbind, or by columns using cbind. For rbind, the data frames must
have the same number of columns; for cbind, the data frames must have the
same number of rows. Vectors or matrices passed to cbind will be converted
to data frames, so the mode of columns passed to cbind will be preserved.

While cbind will demand that data frames and matrices are conformable
(that is, they have the same number of rows), vectors passed to cbind will be
recycled if the number of rows in the data frame or matrix is an even multiple
of the length of the vector. Consider the following two data frames, one with
three rows, and one with four:

> x = data.frame(a=c(’A’,’B’,’C’),x=c(12,15,19))
> y = data.frame(a=c(’D’,’E’,’F’,’G’),x=c(19,21,14,12))

We can bind a vector with two values to the second data frame, since four is an
even multiple of two; R will recycle the vectors values to insure conformability:

> cbind(y,z=c(1,2))
a x z

1 D 19 1
2 E 21 2
3 F 14 1
4 G 12 2

When using cbind, duplicate column names will not be detected:

> cbind(x,y[1:3,])
a x a x

1 A 12 D 19
2 B 15 E 21
3 C 19 F 14

9.6 Combining Data Frames 143

It may be a good idea to use unique names when combining data frames in
this way. An easy way to test is to pass the names of the two data frames to
the intersect function:

> intersect(names(x),names(y))
[1] "a" "x"

When using rbind, the names and classes of values to be joined must
match, or a variety of errors may occur. This is especially important when
values in any of the columns involved are factors. Using the data.frame func-
tion when adding rows to a data frame can usually resolve the problem:

> z = rbind(x,c(a=’X’,x=12))
Warning message:
invalid factor level, NAs generated in:
"[<-.factor"(‘*tmp*‘, ri, value = "X")
> z = rbind(x,data.frame(a=’X’,x=12))
> levels(z$a)
[1] "A" "B" "C" "X"

Although the rbind function will demand that the names of the objects
being combined agree, cbind does not do any such checking. To combine data
frames based on the values of common variables, the merge function should
be used. This function is designed to provide the same sort of functionality
and behavior as the table joins provided by relational databases. Although
merge is limited to operating on two data frames at a time, it can be called
repeatedly to deal with more than two data frames.

The default behavior of merge is to join together rows of the data frames
based on the values of all of the variables (columns) that the data frames have
in common. (In database terminology, this is known as a natural join.) When
called without any other arguments, merge returns only those rows which had
observations in both data frames. As a simple example, consider the merge
resulting from these two data frames, each of which has rows with values of
the merging variable that are not found in the other data frame:

> x = data.frame(a=c(1,2,4,5,6),x=c(9,12,14,21,8))
> y = data.frame(a=c(1,3,4,6),y=c(8,14,19,2))
> merge(x,y)
a x y

1 1 9 8
2 4 14 19
3 6 8 2

Although there were six unique values for a between the two data frames,
only those rows with values of a in both data frames are represented in the
output. To modify this, the all=, all.x=, and all.y= arguments can be
used. Specifying all=TRUE will include all rows (full outer join, in database
terminology), all.x=TRUE will include all rows from the first data frame (left
outer join), and all.y=TRUE does the same for the second data frame (right
outer join). Each case can be illustrated with the current example:

144 9 Reshaping Data

> merge(x,y,all=TRUE)
a x y

1 1 9 8
2 2 12 NA
3 3 NA 14
4 4 14 19
5 5 21 NA
6 6 8 2
> merge(x,y,all.x=TRUE)
a x y

1 1 9 8
2 2 12 NA
3 4 14 19
4 5 21 NA
5 6 8 2
> merge(x,y,all.y=TRUE)
a x y

1 1 9 8
2 3 NA 14
3 4 14 19
4 6 8 2

Note that missing values (NA) are inserted in the places where data was missing
from one of the data frames.

To take more control over which variables are used to merge rows of the
data frame, the by= argument can be used. You provide the by= argument
with a vector of the name or names of the variables that should be used for
the merge. If the merging variables have different names in the data frames
to be merged, the by.x= and by.y= arguments can be used.

When there are multiple rows with common values of the merging vari-
able in either of the data frames being merged, each row will contribute one
observation to the output data frame. If one of the datasets has exactly one
observation for each value of the merging variable(s), the resultant merge
is sometimes known as a table lookup. As a simple example, consider two
datasets, one with city names and state abbreviations, and a second with
state abbreviations and full state names. The goal is to create a dataset with
the names of the cities along with the full state names. The following dataset
represents 10 of the most expensive cities in the United States, based on
housing and food costs:

> cities = data.frame(city=c(’New York’,’Boston’,’Juneau’,
+ ’Anchorage’,’San Diego’,
+ ’Philadelphia’,’Los Angeles’,
+ ’Fairbanks’,’Ann Arbor’,’Seattle’),
+ state.abb= c(’NY’,’MA’,’AK’,’AK’,’CA’,
+ ’PA’,’CA’,’AK’,’MI’,’WA’))

9.6 Combining Data Frames 145

> cities
city state.abb

1 New York NY
2 Boston MA
3 Juneau AK
4 Anchorage AK
5 San Diego CA
6 Philadelphia PA
7 Los Angeles CA
8 Fairbanks AK
9 Ann Arbor MI
10 Seattle WA

A corresponding data frame with state abbreviations and full names can be
formed as follows:

> states = data.frame(state.abb= c(’NY’,’MA’,’AK’,’CA’,
+ ’PA’,’MI’,’WA’),
+ state=c(’New York’,’Massachusetts’,’Alaska’,
+ ’California’,’Pennsylvania’,
+ ’Michigan’,’Washington’))

Note that there is exactly one observation for each state/abbreviation combi-
nation in the states dataset. With this restriction in place, merging the two
datasets is simple (since they have a single variable, state.abb, in common:

> merge(cities,states)
state.abb city state

1 AK Juneau Alaska
2 AK Anchorage Alaska
3 AK Fairbanks Alaska
4 CA San Diego California
5 CA Los Angeles California
6 MA Boston Massachusetts
7 MI Ann Arbor Michigan
8 NY New York New York
9 PA Philadelphia Pennsylvania
10 WA Seattle Washington

The multiple observations per state in the cities data frame cause no prob-
lem, because there was always exactly one matching observation in the states
data frame.

Now suppose we (foolishly) create a data frame with the zip codes for
various cities using only the state abbreviation as an identifier. The problem
is that there will be more than one zip code for some of the states, making
it impossible for merge to know exactly which observations should be joined
together. In cases like this, merge silently creates multiple observations so

146 9 Reshaping Data

that there will be an observation for each multiple occurrence of the merging
variables in the merged data frame.

> zips = data.frame(state.abb=c(’NY’,’MA’,’AK’,’AK’,’CA’,
+ ’PA’,’CA’,’AK’,’MI’,’WA’),
+ zip=c(’10044’,’02129’,’99801’,’99516’,’92113’,
+ ’19127’,’90012’,’99709’,’48104’,’98104’))
> merge(cities,zips)

state.abb city zip
1 AK Juneau 99801
2 AK Juneau 99516
3 AK Juneau 99709
4 AK Anchorage 99801
5 AK Anchorage 99516
6 AK Anchorage 99709
7 AK Fairbanks 99801
8 AK Fairbanks 99516
9 AK Fairbanks 99709
10 CA San Diego 92113
11 CA San Diego 90012
12 CA Los Angeles 92113
13 CA Los Angeles 90012
14 MA Boston 02129
15 MI Ann Arbor 48104
16 NY New York 10044
17 PA Philadelphia 19127
18 WA Seattle 98104

Now there are 18 observations in the output dataset instead of the expected
10. For any state for which there were multiple observations in the zips
data frame, merge has created that many observations for each observation
in the cities dataset with that value of state.abb. The moral is that you
should proceed with caution when you have multiple occurrences of values of
a merging variable in both of the datasets being merged.

9.7 Under the Hood of merge

While the merge function will perform most common tasks regarding com-
bining two data frames, it is occasionally useful to just find the indexes of
common values in two vectors, rather than actually combining them. Inter-
nally, merge uses the match function to find these indexes. This function
requires two arguments: the first is a vector of values to be matched, and the
second is the vector of values that should be searched for possible matches.
For those elements in the first vector that had matching values in the second,

9.7 Under the Hood of merge 147

match returns the index of the first such value in the second vector; for ele-
ments that didn’t match, the default behavior of match is to return a missing
value (NA). Thus, the return value from match will always be a vector of the
same length as the first argument. For example, in Section 9.6, we merged the
cities and states data frames based on common values of the state.abb
variable. To retrieve just the indexes of the matching values, we could call
match as follows:

> match(cities$state.abb,states$state.abb)
[1] 1 2 3 3 4 5 4 3 6 7

The nomatch= argument can be used to provide a different value to be
returned when a match was not found. Since subscripts of 0 are ignored, one
very useful choice for this value is nomatch=0. When this value is used, the
result from match can be used as an index to the second vector to find the
values that actually matched. Continuing with the x and y example from
Section 9.6, suppose we wanted to know which values in x$a were also present
in x$b. By calling match with nomatch=0, the resulting vector can be used as
an index into y$b to extract the actual values:

> indices = match(xa,ya,nomatch=0)
> y$a[indices]
[1] 1 4 6

It may be noted that this is equivalent to the intersect function, which
currently uses match to do its work.

Finally, for the simpler case where interest is only in whether or not ele-
ments in one vector can be found in another vector, the %in% operator can
be used. To produce a logical vector, the same length as x$a, which indicates
which values could be found in y$a, we can use %in% as follows:

> x$a %in% y$a
[1] TRUE FALSE TRUE FALSE TRUE

Like intersect, %in% is currently defined using match.

